今天,我们来讨论一个 Square 开源的 I/O 框架 Okio,我们最开始接触到 Okio 框架还是源于 Square 家的 OkHttp 网络框架。那么,OkHttp 为什么要使用 Okio,它相比于 Java 原生 IO 有什么区别和优势?今天我们就围绕这些问题展开。
本文源码基于 Okio v3.2.0。
1. 说一下 Okio 的优势?
相比于 Java 原生 IO 框架,我认为 Okio 的优势主要体现在 3 个方面:
1、精简且全面的 API: 原生 IO 使用装饰模式,例如使用 BufferedInputStream 装饰 FileInputStream 文件输入流,可以增强流的缓冲功能。但是原生 IO 的装饰器过于庞大,需要区分字节、字符流、字节数组、字符数组、缓冲等多种装饰器,而这些恰恰又是最常用的基础装饰器。相较之下,Okio 直接在 BufferedSource 和 BufferedSink 中聚合了原生 IO 中所有基础的装饰器,使得框架更加精简;
2、基于共享的缓冲区设计: 由于 IO 系统调用存在上下文切换的性能损耗,为了减少系统调用次数,应用层往往会采用缓冲区策略。但是缓冲区又会存在副作用,当数据从一个缓冲区转移到另一个缓冲区时需要拷贝数据,这种内存中的拷贝显得没有必要。而 Okio 采用了基于共享的缓冲区设计,在缓冲区间转移数据只是共享 Segment 的引用,而减少了内存拷贝。同时 Segment 也采用了对象池设计,减少了内存分配和回收的开销;
3、超时机制: Okio 弥补了部分 IO 操作不支持超时检测的缺陷,而且 Okio 不仅支持单次 IO 操作的超时检测,还支持包含多次 IO 操作的复合任务超时检测。
下面,我们将从这三个优势展开分析:
2. 精简的 Okio 框架
先用一个表格总结 Okio 框架中主要的类型:
| 类型 | 描述 |
|---|---|
| Source | 输入流 |
| Sink | 输出流 |
| BufferedSource | 缓存输入流接口,实现类是 RealBufferedSource |
| BufferedSink | 缓冲输出流接口,实现类是 RealBufferedSink |
| Buffer | 缓冲区,由 Segment 链表组成 |
| Segment | 数据片段,多个片段组成逻辑上连续数据 |
| ByteString | String 类 |
| Timeout | 超时控制 |
2.1 Source 输入流 与 Sink 输出流
在 Java 原生 IO 中有四个基础接口,分别是:
字节流:
InputStream输入流和OutputStream输出流;字符流:
Reader输入流和Writer输出流。
而在 Okio 更加精简,只有两个基础接口,分别是:
流:
Source输入流和Sink输出流。
Source.kt
interface Source : Closeable {
// 从输入流读取数据到 Buffer 中(Buffer 等价于 byte[] 字节数组)
// 返回值:-1:输入内容结束
@Throws(IOException::class)
fun read(sink: Buffer, byteCount: Long): Long // 超时控制(详细分析见后续文章)
fun timeout(): Timeout // 关闭流
@Throws(IOException::class)
override fun close()}
Sink.java
actual interface Sink : Closeable, Flushable {
// 将 Buffer 的数据写入到输出流中(Buffer 等价于 byte[] 字节数组)
@Throws(IOException::class)
actual fun write(source: Buffer, byteCount: Long)
// 清空输出缓冲区
@Throws(IOException::class)
actual override fun flush()
// 超时控制(详细分析见后续文章)
actual fun timeout(): Timeout // 关闭流
@Throws(IOException::class)
actual override fun close()}
2.2 InputStream / OutputStream 与 Source / Sink 互转
在功能上,InputStream - Source 和 OutputStream - Sink 分别是等价的,而且是相互兼容的。结合 Kotlin 扩展函数,两种接口之间的转换会非常方便:
source(): InputStream 转 Source,实现类是 InputStreamSource;
sink(): OutputStream 转 Sink,实现类是 OutputStreamSink;
比较不理解的是: Okio 没有提供 InputStreamSource 和 OutputStreamSink 转回 InputStream 和 OutputStream 的方法,而是需要先转换为 BufferSource 与 BufferSink,再转回 InputStream 和 OutputStream。
buffer(): Source 转 BufferedSource,Sink 转 BufferedSink,实现类分别是 RealBufferedSource 和 RealBufferedSink。
示例代码
// 原生 IO -> Okioval source = FileInputStream(File("")).source()val bufferSource = FileInputStream(File("")).source().buffer()val sink = FileOutputStream(File("")).sink()val bufferSink = FileOutputStream(File("")).sink().buffer()// Okio -> 原生 IOval inputStream = bufferSource.inputStream()val outputStream = bufferSink.outputStream()
JvmOkio.kt
// InputStream -> Sourcefun InputStream.source(): Source = InputStreamSource(this, Timeout())// OutputStream -> Sinkfun OutputStream.sink(): Sink = OutputStreamSink(this, Timeout())private class InputStreamSource(
private val input: InputStream,
private val timeout: Timeout) : Source {
override fun read(sink: Buffer, byteCount: Long): Long {
if (byteCount == 0L) return 0
require(byteCount >= 0) { "byteCount < 0: $byteCount" }
try {
// 同步超时监控(详细分析见后续文章)
timeout.throwIfReached()
// 读入 Buffer
val tail = sink.writableSegment(1)
val maxToCopy = minOf(byteCount, Segment.SIZE - tail.limit).toInt()
val bytesRead = input.read(tail.data, tail.limit, maxToCopy)
if (bytesRead == -1) {
if (tail.pos == tail.limit) {
// We allocated a tail segment, but didn't end up needing it. Recycle!
sink.head = tail.pop()
SegmentPool.recycle(tail)
}
return -1
}
tail.limit += bytesRead
sink.size += bytesRead return bytesRead.toLong()
} catch (e: AssertionError) {
if (e.isAndroidGetsocknameError) throw IOException(e)
throw e }
}
override fun close() = input.close()
override fun timeout() = timeout override fun toString() = "source($input)"}private class OutputStreamSink(
private val out: OutputStream,
private val timeout: Timeout) : Sink {
override fun write(source: Buffer, byteCount: Long) {
checkOffsetAndCount(source.size, 0, byteCount)
var remaining = byteCount // 写出 Buffer
while (remaining > 0) {
// 同步超时监控(详细分析见后续文章)
timeout.throwIfReached()
// 取有效数据量和剩余输出量的较小值
val head = source.head!!
val toCopy = minOf(remaining, head.limit - head.pos).toInt()
out.write(head.data, head.pos, toCopy)
head.pos += toCopy
remaining -= toCopy
source.size -= toCopy // 指向下一个 Segment
if (head.pos == head.limit) {
source.head = head.pop()
SegmentPool.recycle(head)
}
}
}
override fun flush() = out.flush()
override fun close() = out.close()
override fun timeout() = timeout override fun toString() = "sink($out)"}
Okio.kt
// Source -> BufferedSourcefun Source.buffer(): BufferedSource = RealBufferedSource(this)// Sink -> BufferedSinkfun Sink.buffer(): BufferedSink = RealBufferedSink(this)
2.3 BufferSource 与 BufferSink
在 Java 原生 IO 中,为了减少系统调用次数,我们一般不会直接调用 InputStream 和 OutputStream,而是会使用 BufferedInputStream 和 BufferedOutputStream 包装类增加缓冲功能。
例如,我们希望采用带缓冲的方式读取字符格式的文件,则需要先将文件输入流包装为字符流,再包装为缓冲流:
Java 原生 IO 示例
// 第一层包装FileInputStream fis = new FileInputStream(file);// 第二层包装InputStreamReader isr = new InputStreamReader(new FileInputStream(file), "UTF-8");// 第三层包装BufferedReader br = new BufferedReader(isr);String line;while ((line = br.readLine()) != null) {
...}// 省略 close
扫一扫在手机打开






